Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Water ; 15(11):2132, 2023.
Article in English | ProQuest Central | ID: covidwho-20245287

ABSTRACT

Wastewater surveillance has been widely used to track the prevalence of SARS-CoV-2 in communities. Although some studies have investigated the decay of SARS-CoV-2 RNA in wastewater, understanding about its fate during wastewater transport in real sewers is still limited. This study aims to assess the impact of sewer biofilms on the dynamics of SARS-CoV-2 RNA concentration in naturally contaminated real wastewater (raw influent wastewater without extra SARS-CoV-2 virus/gene seeding) using a simulated laboratory-scale sewer system. The results indicated that, with the sewer biofilms, a 90% concentration reduction of the SARS-CoV-2 RNA was observed within 2 h both in wastewater of gravity (GS, gravity-driven sewers) and rising main (RM, pressurized sewers) sewer reactors. In contrast, the 90% reduction time was 8–26 h in control reactors without biofilms. The concentration reduction of SARS-CoV-2 RNA in wastewater was significantly more in the presence of sewer biofilms. In addition, an accumulation of c.a. 260 and 110 genome copies/cm2 of the SARS-CoV-2 E gene was observed in the sewer biofilm samples from RM and GS reactors within 12 h, respectively. These results confirmed that the in-sewer concentration reduction of SARS-CoV-2 RNA in wastewater was likely caused by the partition to sewer biofilms. The need to investigate the in-sewer dynamic of SARS-CoV-2 RNA, such as the variation of RNA concentration in influent wastewater caused by biofilm attachment and detachment, was highlighted by the significantly enhanced reduction rate of SARS-CoV-2 RNA in wastewater of sewer biofilm reactors and the accumulation of SARS-CoV-2 RNA in sewer biofilms. Further research should be conducted to investigate the in-sewer transportation of SARS-CoV-2 and their RNA and evaluate the role of sewer biofilms in leading to underestimates of COVID-19 prevalence in communities.

2.
Water ; 15(6):1018, 2023.
Article in English | ProQuest Central | ID: covidwho-2284179

ABSTRACT

The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.

3.
Environ Sci Pollut Res Int ; 29(57): 85658-85668, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2174813

ABSTRACT

As the world continues to cope with the COVID-19 pandemic, emerging evidence indicates that respiratory transmission may not the only pathway in which the virus can be spread. This review paper aims to summarize current knowledge surrounding possible fecal-oral transmission of SARS-CoV-2. It covers recent evidence of proliferation of SARS-CoV-2 in the gastrointestinal tract, as well as presence and persistence of SARS-CoV-2 in water, and suggested future directions. Research indicates that SARS-CoV-2 can actively replicate in the human gastrointestinal system and can subsequently be shed via feces. Several countries have reported SARS-CoV-2 RNA fractions in wastewater systems, and various factors such as temperature and presence of solids have been shown to affect the survival of the virus in water. The detection of RNA does not guarantee infectivity, as current methods such as RT-qPCR are not yet able to distinguish between infectious and non-infectious particles. More research is needed to determine survival time and potential infectivity, as well as to develop more accurate methods for detection and surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Wastewater , RNA, Viral , Water
4.
Sci Total Environ ; 856(Pt 2): 159166, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2049913

ABSTRACT

Monkeypox disease (MPXD), a viral disease caused by the monkeypox virus (MPXV), is an emerging zoonotic disease endemic in some countries of Central and Western Africa but seldom reported outside the affected region. Since May 2022, MPXD has been reported at least in 74 countries globally, prompting the World Health Organization to declare the MPXD outbreak a Public Health Emergency of International Concern. As of July 24, 2022; 92 % (68/74) of the countries with reported MPXD cases had no historical MPXD case reports. From the One Health perspective, the spread of MPXV in the environment poses a risk not only to humans but also to small mammals and may, ultimately, spread to potent novel host populations. Wastewater-based surveillance (WBS) has been extensively utilized to monitor communicable diseases, particularly during the ongoing COVID-19 pandemic. It helped in monitoring infectious disease caseloads as well as specific viral variants circulating in communities. The detection of MPXV DNA in lesion materials (e.g. skin, vesicle fluid, crusts), skin rashes, and various body fluids, including respiratory and nasal secretions, saliva, urine, feces, and semen of infected individuals, supports the possibility of using WBS as an early proxy for the detection of MPXV infections. WBS of MPXV DNA can be used to monitor MPXV activity/trends in sewerage network areas even before detecting laboratory-confirmed clinical cases within a community. However, several factors affect the detection of MPXV in wastewater including, but not limited to, routes and duration time of virus shedding by infected individuals, infection rates in the relevant affected population, environmental persistence, the processes and analytical sensitivity of the used methods. Further research is needed to identify the key factors that impact the detection of MPXV biomarkers in wastewater and improve the utility of WBS of MPXV as an early warning and monitoring tool for safeguarding human health. In this review, we shortly summarize aspects of the MPXV outbreak relevant to wastewater monitoring and discuss the challenges associated with WBS.


Subject(s)
COVID-19 , Monkeypox , Animals , Humans , Monkeypox/epidemiology , Monkeypox/diagnosis , Monkeypox/pathology , Wastewater , Pandemics , COVID-19/epidemiology , Monkeypox virus/genetics , DNA, Viral , Environmental Monitoring , Mammals
5.
Int J Biol Macromol ; 222(Pt A): 972-993, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2041800

ABSTRACT

Several hypotheses have been presented on the origin of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from its identification as the agent causing the current coronavirus disease 19 (COVID-19) pandemic. So far, no solid evidence has been found to support any hypothesis on the origin of this virus, and the issue continue to resurface over and over again. Here we have unfolded a pattern of distribution of several mutations in the SARS-CoV-2 proteins in 24 geo-locations across different continents. The results showed an evenly uneven distribution of the unique protein variants, distinct mutations, unique frequency of common conserved residues, and mutational residues across these 24 geo-locations. Furthermore, ample mutations were identified in the evolutionarily conserved invariant regions in the SARS-CoV-2 proteins across almost all geo-locations studied. This pattern of mutations potentially breaches the law of evolutionary conserved functional units of the beta-coronavirus genus. These mutations may lead to several novel SARS-CoV-2 variants with a high degree of transmissibility and virulence. A thorough investigation on the origin and characteristics of SARS-CoV-2 needs to be conducted in the interest of science and for the preparation of meeting the challenges of potential future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Pandemics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Mutation
6.
Sci Total Environ ; 837: 155663, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1819600

ABSTRACT

Digital polymerase chain reaction (dPCR) is emerging as a reliable platform for quantifying microorganisms in the field of water microbiology. This paper reviews the fundamental principles of dPCR and its application for health-related water microbiology. The relevant literature indicates increasing adoption of dPCR for measuring fecal indicator bacteria, microbial source tracking marker genes, and pathogens in various aquatic environments. The adoption of dPCR has accelerated recently due to increasing use for wastewater surveillance of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) - the virus that causes Coronavirus Disease 2019 (COVID-19). The collective experience in the scientific literature indicates that well-optimized dPCR assays can quantify genetic material from microorganisms without the need for a calibration curve and often with superior analytical performance (i.e., greater sensitivity, precision, and reproducibility) than quantitative polymerase chain reaction (qPCR). Nonetheless, dPCR should not be viewed as a panacea for the fundamental uncertainties and limitations associated with measuring microorganisms in water microbiology. With dPCR platforms, the sample analysis cost and processing time are typically greater than qPCR. However, if improved analytical performance (i.e., sensitivity and accuracy) is critical, dPCR can be an alternative option for quantifying microorganisms, including pathogens, in aquatic environments.


Subject(s)
COVID-19 , Water Quality , Humans , Public Health , Real-Time Polymerase Chain Reaction , Reproducibility of Results , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring
7.
J Hazard Mater ; 432: 128667, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1788119

ABSTRACT

Wastewater-based epidemiology (WBE) approach for COVID-19 surveillance is largely based on the assumption of SARS-CoV-2 RNA shedding into sewers by infected individuals. Recent studies found that SARS-CoV-2 RNA concentration in wastewater (CRNA) could not be accounted by the fecal shedding alone. This study aimed to determine potential major shedding sources based on literature data of CRNA, along with the COVID-19 prevalence in the catchment area through a systematic literature review. Theoretical CRNA under a certain prevalence was estimated using Monte Carlo simulations, with eight scenarios accommodating feces alone, and both feces and sputum as shedding sources. With feces alone, none of the WBE data was in the confidence interval of theoretical CRNA estimated with the mean feces shedding magnitude and probability, and 63% of CRNA in WBE reports were higher than the maximum theoretical concentration. With both sputum and feces, 91% of the WBE data were below the simulated maximum CRNA in wastewater. The inclusion of sputum as a major shedding source led to more comparable theoretical CRNA to the literature WBE data. Sputum discharging behavior of patients also resulted in great fluctuations of CRNA under a certain prevalence. Thus, sputum is a potential critical shedding source for COVID-19 WBE surveillance.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , COVID-19/epidemiology , Humans , RNA, Viral , SARS-CoV-2 , Wastewater
8.
Sci Total Environ ; 824: 153816, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1676914

ABSTRACT

The applicability of wastewater-based epidemiology (WBE) has been extensively studied throughout the world with remarkable findings. This study reports the presence and reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at two wastewater treatment plants (WWTPs) of Nepal, along with river water, hospital wastewater (HWW), and wastewater from sewer lines collected between July 2020 and February 2021. SARS-CoV-2 RNA was detected in 50%, 54%, 100%, and 100% of water samples from WWTPs, river hospitals, and sewer lines, respectively, by at least one of four quantitative PCR assays tested (CDC-N1, CDC-N2, NIID_2019-nCOV_N, and N_Sarbeco). The CDC-N2 assay detected SARS-CoV-2 RNA in the highest number of raw influent samples of both WWTPs. The highest concentration was observed for an influent sample of WWTP A (5.5 ± 1.0 log10 genome copies/L) by the N_Sarbeco assay. SARS-CoV-2 was detected in 47% (16/34) of the total treated effluents of WWTPs, indicating that biological treatments installed at the tested WWTPs are not enough to eliminate SARS-CoV-2 RNA. One influent sample was positive for N501Y mutation using the mutation-specific qPCR, highlighting a need for further typing of water samples to detect Variants of Concern. Furthermore, crAssphage-normalized SARS-CoV-2 RNA concentrations in raw wastewater did not show any significant association with the number of new coronavirus disease 2019 (COVID-19) cases in the whole district where the WWTPs were located, suggesting a need for further studies focusing on suitability of viral as well as biochemical markers as a population normalizing factor. Detection of SARS-CoV-2 RNA before, after, and during the peaking in number of COVID-19 cases suggests that WBE is a useful tool for COVID-19 case estimation in developing countries.


Subject(s)
COVID-19 , Wastewater , COVID-19/epidemiology , Hospitals , Humans , Nepal/epidemiology , RNA, Viral , Rivers , SARS-CoV-2/genetics , Water
9.
Water ; 13(23):3412, 2021.
Article in English | MDPI | ID: covidwho-1554995

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was detected in Wuhan, China. The clinical manifestation of COVID-19 varies from asymptomatic to severe infection. The World Health Organization has reported over 248 million cases and more than 5 million deaths worldwide due to COVID-19. Additionally, developing countries are still struggling to achieve the rapid diagnosis of suspected cases to break the chain of transmission of COVID-19. There may be undiagnosed or missing cases in these countries. Various studies have reported that the SARS-CoV-2 can be discharged in the stool and other bodily fluids. Moreover, it is possible that SARS-CoV-2 can be transmitted in the environment via municipal wastewater. In developing countries, such as Nepal, the molecular-based diagnosis of SARS-CoV-2 for the entire population is not practical owing to insufficient diagnostic material and budgetary constraints. Wastewater-based epidemiology (WBE) is a promising public health surveillance tool for the early warning of disease outbreaks and the understanding the prevalence of viruses for the development of intervention measures. This study highlights the importance of the utilization of WBE as an alternative tool for the mass detection of SARS-CoV-2 RNA in wastewater.

10.
Int J Biol Macromol ; 194: 128-143, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1549823

ABSTRACT

The devastating impact of the ongoing coronavirus disease 2019 (COVID-19) on public health, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has made targeting the COVID-19 pandemic a top priority in medical research and pharmaceutical development. Surveillance of SARS-CoV-2 mutations is essential for the comprehension of SARS-CoV-2 variant diversity and their impact on virulence and pathogenicity. The SARS-CoV-2 open reading frame 10 (ORF10) protein interacts with multiple human proteins CUL2, ELOB, ELOC, MAP7D1, PPT1, RBX1, THTPA, TIMM8B, and ZYG11B expressed in lung tissue. Mutations and co-occurring mutations in the emerging SARS-CoV-2 ORF10 variants are expected to impact the severity of the virus and its associated consequences. In this article, we highlight 128 single mutations and 35 co-occurring mutations in the unique SARS-CoV-2 ORF10 variants. The possible predicted effects of these mutations and co-occurring mutations on the secondary structure of ORF10 variants and host protein interactomes are presented. The findings highlight the possible effects of mutations and co-occurring mutations on the emerging 140 ORF10 unique variants from secondary structure and intrinsic protein disorder perspectives.


Subject(s)
COVID-19/virology , Host Microbial Interactions/immunology , Open Reading Frames , SARS-CoV-2/genetics , Viral Proteins , Humans , Mutation , Viral Proteins/genetics , Viral Proteins/immunology
11.
Sci Total Environ ; 813: 151919, 2022 Mar 20.
Article in English | MEDLINE | ID: covidwho-1531803

ABSTRACT

Recent outbreaks caused by coronaviruses and their supposed potential fecal-oral transmission highlight the need for understanding the survival of infectious coronavirus in domestic sewers. To date, the survivability and decay of coronaviruses were predominately studied using small volumes of wastewater (normally 5-30 mL) in vials (in-vial tests). However, real sewers are more complicated than bulk wastewater (wastewater matrix only), in particular the presence of sewer biofilms and different operational conditions. This study investigated the decay of infectious human coronavirus 229E (HCoV-229E) and feline infectious peritonitis virus (FIPV), two typical surrogate coronaviruses, in laboratory-scale reactors mimicking the gravity (GS, gravity-driven sewers) and rising main sewers (RM, pressurized sewers) with and without sewer biofilms. The in-sewer decay of both coronaviruses was greatly enhanced in comparison to those reported in bulk wastewater through in-vial tests. 99% of HCoV-229E and FIPV decayed within 2 h under either GS or RM conditions with biofilms, in contrast to 6-10 h without biofilms. There is limited difference in the decay of HCoV and FIPV in reactors operated as RM or GS, with the T90 and T99 difference of 7-10 min and 14-20 min, respectively. The decay of both coronaviruses in sewer biofilm reactors can be simulated by biphasic first-order kinetic models, with the first-order rate constant 2-4 times higher during the first phase than the second phase. The decay of infectious HCoV and FIPV was significantly faster in the reactors with sewer biofilms than in the reactors without biofilms, suggesting an enhanced decay of these surrogate viruses due to the presence of biofilms and related processes. The mechanism of biofilms in virus adsorption and potential inactivation remains unclear and requires future investigations. The results indicate that the survivability of infectious coronaviruses detected using bulk wastewater overestimated the infectivity risk of coronavirus during wastewater transportations in sewers or the downstream treatment.


Subject(s)
Coronavirus , Wastewater , Biofilms , Humans , Kinetics , Sewage
12.
Int J Biol Macromol ; 191: 934-955, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1433283

ABSTRACT

The spike (S) protein is a critical determinant of the infectivity and antigenicity of SARS-CoV-2. Several mutations in the S protein of SARS-CoV-2 have already been detected, and their effect in immune system evasion and enhanced transmission as a cause of increased morbidity and mortality are being investigated. From pathogenic and epidemiological perspectives, S proteins are of prime interest to researchers. This study focused on the unique variants of S proteins from six continents: Asia, Africa, Europe, Oceania, South America, and North America. In comparison to the other five continents, Africa had the highest percentage of unique S proteins (29.1%). The phylogenetic relationship implies that unique S proteins from North America are significantly different from those of the other five continents. They are most likely to spread to the other geographic locations through international travel or naturally by emerging mutations. It is suggested that restriction of international travel should be considered, and massive vaccination as an utmost measure to combat the spread of the COVID-19 pandemic. It is also further suggested that the efficacy of existing vaccines and future vaccine development must be reviewed with careful scrutiny, and if needed, further re-engineered based on requirements dictated by new emerging S protein variants.


Subject(s)
COVID-19/epidemiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution/immunology , COVID-19/immunology , Entropy , Humans , Isoelectric Point , Mutation/immunology , Pandemics/statistics & numerical data , Phylogeny , Spike Glycoprotein, Coronavirus/immunology
13.
Environ Res ; 204(Pt B): 112092, 2022 03.
Article in English | MEDLINE | ID: covidwho-1433211

ABSTRACT

Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Uncertainty
14.
Autoimmun Rev ; 20(11): 102941, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401227

ABSTRACT

Although vaccination represents the most promising way to stop or contain the coronavirus disease 2019 (COVID-19) pandemic and safety and effectiveness of available vaccines were proven, a small number of individuals who received anti-SARS-CoV-2 vaccines developed a prothrombotic syndrome. Vaccine-induced immune thrombotic thrombocytopenia (VITT) can be triggered by the adenoviral vector-based vaccine, whereas lipid nanoparticle-mRNA-based vaccines can induce rare cases of deep vein thrombosis (DVT). Although the main pathogenic mechanisms behind this rare phenomenon have not yet been identified, both host and vaccine factors might be involved, with pathology at least in part being related to the vaccine-triggered autoimmune reaction. In this review, we are considering some aspects related to pathogenesis, major risk factors, as well as peculiarities of diagnosis and treatment of this rare condition.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Viral Vaccines , Autoimmunity , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination/adverse effects
19.
Biomolecules ; 11(7)2021 07 13.
Article in English | MEDLINE | ID: covidwho-1308294

ABSTRACT

Two adenovirus-based vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S, and two mRNA-based vaccines, BNT162b2 and mRNA.1273, have been approved by the European Medicines Agency (EMA), and are invaluable in preventing and reducing the incidence of coronavirus disease-2019 (COVID-19). Recent reports have pointed to thrombosis with associated thrombocytopenia as an adverse effect occurring at a low frequency in some individuals after vaccination. The causes of such events may be related to SARS-CoV-2 spike protein interactions with different C-type lectin receptors, heparan sulfate proteoglycans (HSPGs) and the CD147 receptor, or to different soluble splice variants of the spike protein, adenovirus vector interactions with the CD46 receptor or platelet factor 4 antibodies. Similar findings have been reported for several viral diseases after vaccine administration. In addition, immunological mechanisms elicited by viral vectors related to cellular delivery could play a relevant role in individuals with certain genetic backgrounds. Although rare, the potential COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) requires immediate validation, especially in risk groups, such as the elderly, chronic smokers, and individuals with pre-existing incidences of thrombocytopenia; and if necessary, a reformulation of existing vaccines.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Thrombosis/etiology , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , BNT162 Vaccine , COVID-19/immunology , ChAdOx1 nCoV-19 , Humans , Risk Factors , SARS-CoV-2/immunology , Smokers , Spike Glycoprotein, Coronavirus/immunology , Thrombocytopenia/etiology , Thrombocytopenia/immunology , Thrombosis/immunology , Vaccination/adverse effects
20.
Pathogens ; 10(7)2021 Jun 23.
Article in English | MEDLINE | ID: covidwho-1288971

ABSTRACT

In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A-F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April-July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.

SELECTION OF CITATIONS
SEARCH DETAIL